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Perturbation theory for the nearly integrable non-linear 
equations associated with a modified Zakharov-Shabat 
scattering problem 

R K Dodd, H C Morris and J Eagleton 
School of Mathematics, Trinity College, Dublin 2, Ireland 

Received 18 September 1978, in final form 13 August 1979 

Abstract. Recently it has been shown that the derivative non-linear Schrodinger equation, 
concerned with wave propagation in plasmas, can be associated with a modified Zakharov- 
Shabat inverse scattering problem. In this paper we produce an operator formula for the 
most general system of equations solvable by this method and develop a perturbation theory 
capable of determining the variation in the scattering data to first order. We illustrate the 
theory by applying it to the derivative non-linear Schrodinger equation containing an 
additional perturbing harmonic forcing term, and consider the effect of this perturbation on 
an algebraic soliton. 

1. The scattering problem 

We consider the following scattering problem, 

V, = PV where P ( l )  = ( 
with q, r + 0 as 1x1 + 00 and V a two-component column vector. 

This scattering problem has recently been shown to be intimately related to the 
massive Thirring model in characteristic coordinates (Michaelov 1976, Morris 1979, 
Kaup and Newell 1977) and the derivative non-linear Schrodinger equation of plasma 
physics (Kaup and Newell 1978a). Following Newell and Kaup (Kaup 1976, Newell 
1980) we develop a perturbation theory for the nearly solvable evolution equations 
determined by equation (1.1). 

of equation (1.1) by the asymp- 
totic relationships 

Define the fundamental matrix solutions @ and 

The scattering matrix A is defined by 

0305-4470/80/041455 + 11$01.50 @ 1980 The Institute of Physics 

(1.4) 
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From equation (I .  1) one easily shows that for an arbitrary variation SCP of CP we have 

(@O-'S@), =@- 'am.  (1.5) 

Integrating over [-L, L] and allowing L + 00, we obtain 

where d , T ,  and (I; are defined by 

a? = (4 ,& * = (*, 4) (1.7) 

and we have used equation (1.5) in the case of a variation of [ above. 
If we define 

(1.9) 
(1.10) 

(1.11) 

(1.12) 

when the potentials q and r are on compact support. In this case Ablowitz etal (1974) 
and Kaup and Neweil(l978a, b) have shown that the fundamental matrix solutions and 
the scattering matrix are analytic in the whole (J plane. We shall impose this condition 
for the remainder of this section. 

Asymptotically we have 

(1.14) 

(1.15) 

where 
03 

p - ( x ) = f l *  rq dx, p+(x)  = 3 1 rq dx and p = p-(x)+p+(x) .  (1.16) 
x .  -W 

Relations (1.9)-(1.12) and (1.13)-(1.15) imply 

ad+b&= 1. (1.17) 

As shown by Kaup and Newel1 (1978a, b), a([) and E ( [ )  are even functions and 
b([),d([) are odd functions of 1. Thus the zeros of a ( [ )  and E ( [ ) ,  which are the 
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bound-state eigenvalues of equation (1. l) ,  arise in pairs (f, - f )  and at such a zero, which 
we assume to be simple, we have 

4 (52 k = bz k$ (52 k 1, (1.18) 

We have introduced the convention that if l2k, ( f Z i )  is an eigenvalue in the first (fourth) 
quadrant, then &cl = -52k9 (&,+I = - f z j )  is an eigenvalue in the third (second) 
quadrant, k = 1, . . . , M, ( j  = 1, . . . , N ) .  It is convenient at this point to introduce the 
normalisation constants for the bound states, 

6(52i) = b;i$(t2j)- 

where 

(1.19) 2 2  al: = (aa/aA)lA=Ak and A = L 2 ,  hk = l 2 k  = 5 2 k i . l .  

From equation (1.4) it then follows, upon integrating around the contours in figure 1, 
that 

0 0 exp(-ip +(x))) 
0 

. ( 1.20) i 

(1.21) 

(1.22) 

(1.23) 

(l.24) 

(1.25) 

(1.26) 
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Characteristic theory and uniqueness and existence theory of ordinary differential 
equations then ensure that equation (1.21) is valid. Substituting equation (1.21) into 
equation (1.20) and taking Fourier transforms along the contour R in figure 1 we obtain 
the Marchenko equations 

where 

and 

F ’ ( z )  = dF(z)/dz.  (1.28) 

Figure 1. The contours C, E, and R in the complex plane. 

Define 

and assume a, d have only simple zeros; then the definitions (1.28) for non-compact 
support become 

M 1 r x  
F ( z )  = 1 C‘k exp(iAkz) J p ( A )  exp(ih2) dh, 

k = l  271. -x 

X N 
F ( z )  = 1 Ci exp(-ii,z) t- p ( A )  exp(-ihz) dA. (1.30) 

j = l  21T --CO 

N-soliton solutions are obtained by solving equation (1.27) with p = 0, p = 0 in equation 
(1.28). In particular the one-soliton solutions are found by taking 

F ( z )  = C exp(ihz), P(z) = C exp(-iXz); (1.31) 
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then from equations (1.23) and (1.27) we have 

with 

ACC exp 2i(A - X)x ), B ( x ) = ( l -  XCC exp 2i(A - 1)x 
(A - X)' D(x)  = (1 - 

(A -X)' 
Equations (1.23) and (1.33) define the one-soliton solutions 

q(x) = -2C exp(-2 i~x)~(x) f i - ' (x ) ,  

r(x) = 2 C  exp(2 iA~)f i (x)D-~(x) ,  

exp i(p+(x)) = f i ( x ) ~ - ' ( x ) .  

Introducing the definitions 

z = -i C exp 2i Ax/(A -A), .f = i exp -2iXx/(A -A), 
equation (1.2 1) yields for the corresponding bound-state eigenfunctions 

For an arbitrary point on the real line, p E R ,  we have 

1459 

(1 3 2 )  

(1.33) 

(1.34) 

(1.35) 

(1.36) 

(1.37) 

(1.38) 

(1.39) 

(1.40) 

(1.41) 

2. Solvable equations and perturbation theory for the inverse scattering problem 
(1.1) 

First notice that in the case of the exactly solvable equations, (1.9)-( 1.12) become, when 
the variation is with respect to time, 

A k t  = 0, XI, = 0, (2.1) 
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When the potentials are on compact support, these can be written using equation (1.4) 
as 

d A )  = (1/a2(A))U4, 41, (2.7) 

p t ( A )  = ( ~ / G ~ ( A ) ) I ~ ( & ,  6). (2.8) 

If we define 

(2.9) 
(2.10) 

then equations (2.7) and (2.8) become 

p t ( A ) = W A ) d A )  and & ( A )  = - @ A ) P ( A ) ,  (2.11) 

which are integrable. Minor generalisations are achieved by allowing the variation to 
be a directional derivative which includes other spatial variables (e.g. 8 = a / a t  + 
h( t ,  y )  . a / a y ) .  From equation (1.1) we also have the relation 

(2.12) 

(2.13) 

Equation (2.13) involves an inner product between the 'squared' eigenfunctions. Using 
equation (1.1) one obtains 

where 

(2.14) 

(2.15) 

(2.16) 

(2.17) 
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The adjoint operator is defined by 

The solvable equations are therefore, from equation (2.13), 

(2.18) 

(2.19) 

provided fi =I R. In this paper we assume this to be the case, although presumably 
removing this restriction provides other interesting evolution equations. 

As examples of the general evolution equations solvable by equation (1.1) we 
consider cases when R is an entire function of A and one example when R is a singular 
function of A. 

Example 1 .  R = 2iA 

is just a linear wave equation. 

Example 2. R = 4iA 

(2.20) 

(2.21) 

When r = 14" the system reduces to a single equation, the derivative non-linear 
Schrodinger equation, 

iqr = - q x x  *i(q2q*)x (2.22) 

which governs the propagation of circularly polarised non-linear Alfven waves in 
plasmas (Mi0 et a1 1976, Mjprlhus 1976, Ichikawa and Watanabe 1977). 

Example 3. R = -8iA3 

r, - - (r,, + 3irqrx -q2r3), ,  
-4, -(qxx - 3iqrq, - q3r2), .  

qt = ( q x x  f 3q2qx +5q5),. 

When r = f iq  this yields an integrable model for long lattice waves, 

(2.23) 

(2.24) 

Example 4. R = 1/2iA 

U,, - i UVU, = U, V,, + i UVV, = V, 

with 

U = r exp(-2iw+) and v = q exp(2iw+). (2.25) 

It follows from equations (2.18) and (2.19) in a similar fashion to the Zakharov- 
Shabat system (Ablowitz et a1 1974) that the dispersion relation of the linearised 
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equation determines the R for the non-linear equation. Thus for q, r << 1, we have from 
equations (1.23), (1.27) and (1.30) 

(2.26) q = - [ 3 exp[-i(2Ax + ifit)] dh, 

From equations (1.9)-(1.12) it is possible to obtain the variation of the scattering data, 
which we take to be the set S = (p ,  p, hk,  x,, ck, e,, k = 1, . . . , M, j = 1, . . . , N ) ,  with 
respect to time when the potentials are not on compact support and do not necessarily 
correspond to one of the set of exactly solvable equations (2.19). 

pr(A) = U / a 2 ( A ) M 4 ,  41, (2.27) 

m 

r = [ p exp[i(2Ax - iRt)] dh. 
1 -  
rr -m 7T -m 

(2.28) 

(2.29) 

(2.30) 

We now, as an example, develop a perturbation theory for the effects of weak 
perturbations on solitons and apply it to the derivative non-linear Schrodinger equation 
for the case of a perturbed algebraic soliton. The almost integrable equations are, from 
equation (2.19), 

(2.33) 

where S is a small parameter and f, g are functionals of r, q and their x-derivatives. 

the following manner: 
For r = q*, E = i 1, the barred and unbarred quantities defined in 8 1 are related in 

&(Cl = M$*(i*), $( f )  = -€MC$*(l*), ~ ( f )  = a*( f * ) ,  

F ( f )  = - € b * ( f * ) ,  cj = - E C T ,  h, = A T ,  

where 

M = l  'O i). 
\ E  

(2.34) 
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This leads to the following relations between the kernels and associated functions 
occuring in the Marchenko equations (1.22).-(1.28): 

P = --EF*, B = D*, L=L*,  
(2.35) 

which agrees with the work of Kaup and Newel1 (1978a,b). For the derivative 
non-linear Schrodinger equation, Cl= 4iA2 and equation (2.33) reduces to the single 
equation 

qt = iq,, + -~(q’q*), - W q ,  4’). (2.36) 

The effects of this perturbation on the scattering data to first order in S for a single 
soliton are easily obtained from equations (2.27)-(2.32): 

(2.37) 

(2.38) 

pr = w )P + 6 (1/a 2 ) ~ p  ( 4 , 4 )  + 0 ( a 2 ) ,  

ih, = (6/Ca’2)IA(4, 4)=  -6CAIA(@, $)+0(S2) ,  

with 

(2.39) 

(2.40) 

For an algebraic soliton, after rescaling the Jost functions, equations (1.39) and (1.43) 
become 

-- \ [-ie+4A2(x - x o ) ]  I 
- - - ~ p ” ~  exp{i[(p - 2 5 ) ~  --2ao]} 

A[ie + 4A2(x - xo)] 
- E eiPx[i(p + 5) + 45(p - t ) ( x  - x0)I 

2ih2[-ie + 4A2(x - xo)] 
-- 

-- I *(x, P) = 

(2.41) 

(2.42) 

where p E R.  These representations are obtained by dehning 

c = 2rih-l exp 2(iaoi- q x o ) .  A = & + i q  =A2(€+@) (2.43) 

and inserting them into equations (1.39) and (1.43), after rescaling by $(x,p)+ 
(1/2iA2)(p - A * ) $ ( x ,  p)  and taking the limit p -+ 0. The function defined by equation 
(2.42) no longer satisfies the boundary condition (1.3) because of the rescaling. 
However even in this case we still obtain the equation (1.6) giving the variation of the 
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scattering data for the rescaled system. Thus equations (2.37)-(2.40) are still valid, but 
the scattering datd and the Jost functions are now those associated with the rescaled 
system. 

The algebraic soliton is obtained from equation (1.35) upon using the represen- 
tation (2.43) for C and taking the limit p 3 0 (Kaup and Newel1 1978a, b). It can also be 
derived directly from either (2.41) or (2.42) and equation (l.l), and is given by 

[-ie + 4A2(x - xO)] 
Lie + 4A2(x - x0)12 * 

q = 4Ae exp[-2i(eA2x + vO)] 

Ibl 

(2.44) 

Figure 2. The algebraic soliton. The algebraic soliton depicted here has initial value? x o  = 0, 
a. = 0 and A = 1. The figure displays ( a )  the real and ( b )  the imaginary parts of the soliton, 
displayed as an envelope modulating an oscillatory wavetrain represented by 4 = 141 exp io, 
where / q / = 4 A / [ 1 + 1 6 A ~ ( x - ~ ~ ) ~ ] ,  . 9 = - 2 ( ~ A ~ x + u ~ ) + 3 a ,  

Mjdhus (1978) has shown that algebraic solitons arise in the transition from 
modulational stability to instability of an initial circularly polarised long AlfvCn wave 
solution to the derivative non-linear Schrodinger equation. For the algebraic soliton 
with g = Ig(t)/  e2iwr the iqtegrals in equations (2.37)-(2.39) can easily be evaluated: 

(2.46) 
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(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

A detailed analysis of the singular perturbation problem posed by equations 
(2.49)-(2.53) will be given elsewhere. Here we merely note that if we assume 77 = O(6) 
and p4p(t) = O(S),  so that we can then ignore the effects of the continuum to this order, 
the eigenvalue is constant in time. The principal effect is seen to be an imposed 
oscillatory motion on the velocity of the soliton (xot). 
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